AbstractFetcherThread:拉取消息的步骤
副本机制是Kafka实现数据高可靠性的基础:同一个分区下的多个副本分散在不同的Broker机器上,它们保存相同的消息数据以实现高可靠性。那如何确保所有副本上的数据一致性呢?最常见方案当属Leader/Follower备份机制(Leader/Follower Replication)。Kafka分区的:
某个副本会被指定为Leader,负责响应客户端的读、写请求
其他副本自动成为Follower,被动同步Leader副本中的数据
被动同步:Follower副本不断向Leader副本发送读取请求,以获取Leader处写入的最新消息数据
本文就研究Follower副本如何通过拉取线程实现这一目标。Follower副本在副本同步过程中,还可能发生截断(Truncation),其原理又是为何?
案例
这部分源码贴近底层设计架构原理。阅读它对我实际有啥用?
生产环境曾发现,一旦Broker上副本数过多,Broker内存占用就会很高。HeapDump后,发现在于ReplicaFetcherThread#buildFetch有这么一行代码:
val builder = fetchSessionHandler.newBuilder()
1
内部会实例化一个LinkedHashMap。若分区数很多,该Map会被扩容数次,带来大量不必要的数据拷贝,既增加内存Footprint,又浪费CPU。后续通过将负载转移到其他Broker解决该问题。
Kafka社区也发现了这个Bug,所以现在变成:
修改后语句直接传入FETCH请求中总的分区数,并直接将其传给LinkedHashMap,避免再执行扩容。
说回Follower副本从Leader副本拉取数据。Kafka就是通过ReplicaFetcherThread,副本获取线程实现的消息拉取及处理。
本文先从抽象基类AbstractFetcherThread研究,最终彻底搞明白Follower端同步Leader端消息的原理。
AbstractFetcherThread
抽象类,从Broker获取多个分区的消息数据,至于获取之后如何对这些数据进行处理,则交由子类来实现。
类定义及字段
除了构造器的这几个字段,AbstractFetcherThread还定义了两个type类型。关键字type定义一个类型,可当做一个快捷方式,如FetchData:
type FetchData = FetchResponse.PartitionData[Records]
1
类似快捷方式:凡源码用到FetchResponse.PartitionData[Records],都可使用FetchData替换,EpochData同理。
FetchData定义里的PartitionData类型,是客户端clients工程中FetchResponse类的嵌套类。FetchResponse类封装的是FETCH请求的Response对象,其内PartitionData是个POJO,保存Response中单个分区数据拉取的各项数据:
从该分区的Leader副本拉取回来的消息
该分区的高水位值
日志起始位移值
…
在PartitionData中,最需关注的是recordSet,保存了实际的消息集合。
注意到EpochData定义位置,它也是PartitionData类型,但EpochData的PartitionData是OffsetsForLeaderEpochRequest的PartitionData类型
Kafka源码有很多名为PartitionData的嵌套类。很多请求类型中的数据都是按分区层级分组,因此源码很自然地在这些请求类中创建同名嵌套类。所以,注意区分PartitionData嵌套类是定义在哪类请求中的!
分区读取状态类
AbstractFetcherThread构造器中,还有个**PartitionStates[PartitionFetchState]**类型的字段:
泛型参数类型PartitionFetchState类,表征分区读取状态,保存分区的已读取位移值和对应副本状态。
这里的状态有二:
副本读取状态
副本读取状态由ReplicaState接口表示:
分区读取状态:
可获取,表明副本获取线程当前能够读取数据。
截断中,表明分区副本正在执行截断操作(比如该副本刚刚成为Follower副本)。
被推迟,表明副本获取线程获取数据时出现错误,需要等待一段时间后重试。
分区读取状态中的【可获取、截断中】与副本读取状态的【获取中、截断中】并非严格对应。副本读取状态处获取中,并不一定表示分区读取状态就是可获取状态。对于分区,它是否能被获取的条件要比副本严格。
副本获取线程做的事情,日志截断和消息获取:
isReplicaInSync,副本限流,出镜率不高
isDelayed,判断是否需要推迟获取对应分区的消息
源码会不断调整那些不需要推迟的分区的读取顺序,以保证读取公平性。公平性实现在partitionStates字段的PartitionStates类,定义在clients工程。会接收一组要读取的主题分区,然后轮询读取这些分区以确保公平性。
clients端源码自行查阅。
public class PartitionStates<S> {
private final LinkedHashMap<TopicPartition, S> map = new LinkedHashMap<>();
……
public void updateAndMoveToEnd(TopicPartition topicPartition, S state) {
map.remove(topicPartition);
map.put(topicPartition, state);
updateSize();
}
……
}
PartitionStates轮询处理要读取的多个分区,依靠LinkedHashMap保存所有主题分区,其元素有明确迭代顺序,默认为元素插入的顺序。
假设Kafka要读5个分区的消息:A、B、C、D和E。若插入顺序:ABCDE,则首先读分区A。一旦A被读取后,为确保各分区都有同等机会被读取,代码需将A插入到分区列表的最后一位,这就是updateAndMoveToEnd:把A从map中移除,再插回去,这样A自然就处于列表的最后一位了。这便是PartitionStates的作用。
如需转载,请注明文章出处和来源网址:http://www.divcss5.com/html/h64792.shtml