一、搜索树
1.1 概念
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;
若它的右子树不为空,则右子树上所有节点的值都大于根节点的值;
它的左右子树也分别为二叉搜索树。
如:
1.2 查找
若根节点不为空:
如果根节点==查找key 返回当前节点;
如果根节点 >查找key在其左子树查找;
如果根节点<查找key在其右子树查找;否则就是没有找到,返回null;
class Node{
public int val;
public Node left;
public Node right;
public Node(int val){
this.val = val;
}
}
//二叉搜索树
public class BinarySearchTree {
public Node root = null;
//查找
public Node search(int key){
Node cur = root;
while (cur != null){
if(cur.val == key){
return cur;
}else if(cur.val < key){
cur = cur.right;
}else{
cur = cur.left;
}
}
return null;
}
1.3 插入
用cur和parent来找到val需要存储的位置。
parent.val 和val比较大小,确定是在左边还是在右边进行插入。
public boolean insert(int val) {
if(root == null) {
root = new Node(val);
return true;
}
Node cur = root;
Node parent = null;
while (cur != null) {
if(cur.val < val) {
parent = cur;
cur = cur.right;
}else if(cur.val == val) {
return false;//不能有相同的数据
}else {
parent = cur;
cur = cur.left;
}
}
Node node = new Node(val);
if(parent.val < val) {
parent.right = node;
}else {
parent.left = node;
}
return true;
}
1.4 删除
设待删除结点为 cur, 待删除结点的双亲结点为 parent;
cur.left == null
cur 是 root,则 root = cur.right
cur 不是 root,cur 是 parent.left,则 parent.left = cur.right
cur 不是 root,cur 是 parent.right,则 parent.right = cur.right
cur.right == null
cur 是 root,则 root = cur.left
cur 不是 root,cur 是 parent.left,则 parent.left = cur.left
cur 不是 root,cur 是 parent.right,则 parent.right = cur.left
cur.left != null && cur.right != null
需要使用替换法进行删除:
在cur的左树当中找最大值或者在cur的右树中找最小值
用它的值填补到被删除节点中,再来处理该结点的删除问题。
/**
* Created With IntelliJ IDEA
* Description:
* Users: yyyyy
* Date: 2022-02-19
* Time: 16:43
*
*/
class Node{
public int val;
public Node left;
public Node right;
public Node(int val){
this.val = val;
}
}
//二叉搜索树
public class BinarySearchTree {
public Node root = null;
//查找
public Node search(int key){
Node cur = root;
while (cur != null){
if(cur.val == key){
return cur;
}else if(cur.val < key){
cur = cur.right;
}else{
cur = cur.left;
}
}
return null;
}
//插入
public boolean insert(int val) {
if(root == null) {
root = new Node(val);
return true;
}
Node cur = root;
Node parent = null;
while (cur != null) {
if(cur.val < val) {
parent = cur;
cur = cur.right;
}else if(cur.val == val) {
return false;//不能有相同的数据
}else {
parent = cur;
cur = cur.left;
}
}
Node node = new Node(val);
if(parent.val < val) {
parent.right = node;
}else {
parent.left = node;
}
return true;
}
public void remove(int key){
Node cur = root;
Node parent = null;
while (cur != null){
if (cur.val == key){
removeNode(cur,parent);
break;
}else if(cur.val < key){
parent = cur;
cur = cur.right;
}else{
parent = cur;
cur = cur.left;
}
}
}
//cur代表要删除的节点
public void removeNode(Node cur,Node parent){
if (cur.left == null){
if(cur == root){
root = cur.right;
}else if(cur == parent.left){
parent.left = cur.right;
}else{
parent.right = cur.right;
}
}else if(cur.right == null){
if(cur == root){
root = cur.left;
}else if(cur == parent.left){
parent.left = cur.left;
}else {
parent.right = cur.left;
}
}else{//cur的左和右都不为空的情况
//找到cur的右子树的最小值然后进行替换
Node targetParent = cur;
Node target = cur.right;
while (target.left != null){
targetParent = target;
target = target.left;
}
cur.val = target.val;
if (target == targetParent.left){
targetParent.left = target.right;
}else {
targetParent.right = target.right;
}
}
}
public void inOrder(Node root){
if(root == null)return;
inOrder(root.left);
System.out.print(root.val + " ");
inOrder(root.right);
}
public static void main(String[] args) {
int[] arr = {2,45,19,12,3,8};
BinarySearchTree binarySearchTree = new BinarySearchTree();
for (int i = 0; i < arr.length; i++) {
binarySearchTree.insert(arr[i]);
}
binarySearchTree.inOrder(binarySearchTree.root);
System.out.println();
System.out.println("插入重复的数");
System.out.println(binarySearchTree.insert(2));
System.out.println("删除数据");
binarySearchTree.remove(2);
binarySearchTree.inOrder(binarySearchTree.root);
}
}
如需转载,请注明文章出处和来源网址:http://www.divcss5.com/html/h65233.shtml